Paraphrasing controlled English texts

Kaarel Kaljurand

CNL 2009, Marettimo, Italy

2009-06-09
Outline

• What is a paraphrase?
• Usage and requirements
• Paraphrasing ACE by DRS verbalization
 – DRS → Core ACE
 – DRS → NP ACE
• Encountered problems, conclusions
Tool support for CNLs

• CNLs have formal syntax/semantics
 – just like programming languages
• thus enable various useful supporting tools
 – syntax highlighting, syntax error pinpointing, auto-completion, consistency checking, refactoring, etc., etc.
• A paraphraser is one of such tools
Definition

• A paraphrase of a text is its reformulation (in the same language) such that the meaning of the text is preserved.
 – Paraphrase cannot use meta-level such as color, font-size, full NL
 – We have to define what is meant by "meaning"

• Additionally, the text and its paraphrase should be syntactically different.
 – The language should contain syntactic sugar

• Example:
 – Mary is liked by everybody.
 – If there is somebody X then X likes Mary.
Possible uses

• Make the interpretation of the text more clear
 – point out constructs that are potentially misunderstood
• Reformulate the text so that it becomes easier to read
 – bring related sentences closer together
• Highlight constructs that are not supported in the underlying logic
 – e.g. the underlying DRS cannot be expressed in OWL
• ...

Requirements

• Paraphrase should be different from the original (by definition)
 – How different? Similar sentence structure can help the user to better relate the paraphrase to the original.

• Mary is liked by John and she likes him.
 – Mary is liked by John and Mary likes John.
 – John likes Mary. Mary likes John.
Requirements

• Paraphrase language should be syntactically small
 – paraphrasing as "normalization" into a core subset of the full CNL
 – the (interpretation of the) core subset is probably easier to learn for the user
Requirements

• Paraphrase should improve readability
• Readability of a single sentence
 – Every book is a document that an author who a publisher likes writes.
 • Every book is a document that is written by an author who is liked by a publisher.
 • If there is a book X then X is a document and an author Y writes X and a publisher likes Y.

• Readability of the complete text
 – e.g. reorder sentences to avoid long-distance anaphoric references
Requirements

• Paraphrase should teach the interpretation rules of the CNL
 – i.e. transform into a form that is less ambiguous in parent NL

• A dog is an animal.
 – There is a dog. The dog is an animal. (a is an existential quantifier)

• Every dog is an animal.
 – If there is a dog then the dog is an animal. (every corresponds to if-then)
Paraphrasing ACE texts

• Meaning of ACE texts given by the DRS
• DRS structural equivalence:
 – e.g. reordering DRS conditions is allowed
 – e.g. renaming variables and changing sentence/token IDs is allowed
 – e.g. removing double negation is not
• ACE provides syntactic sugar
 – various forms of coordination and negation, every vs if-then, of vs Saxon genitive, various forms of anaphoric references, sentence reordering
• Two paraphrase languages so far
 – Core ACE
 – NP ACE
• No territory that is bordered by at least 2 countries is an enclave.
• If at least 2 countries border a territory X1 then it is false that the territory X1 is an enclave.
Core ACE: ideas

- Use the smallest syntactic subset of ACE (i.e. the core)
- "Flatten" the structure of sentences
 - remove relative clauses
 - split sentence conjunction into multiple sentences
- Fix the order of
 - sentences
 - elements in coordination
 - adjuncts (prepositional phrases and adverbs)
The Core ACE language

• Defined by removing some ACE constructs such that the semantic expressivity is not affected
 – quantifiers: every, each, no, for each, … (→ if-then)
 – passive (X is seen by Y → Y sees X)
 – Saxon genitive (John’s dog → a dog of John)
 – VP negation
 • A man does not run. →
 • There is a man. It is false that the man runs.
 – relative clauses
 • Every man who loves a woman who loves him smiles. →
 • If a woman X1 loves a man X2 and the man X2 loves the woman X1 then the man X2 smiles.
 – pronouns
 • John sees somebody. He hates John’s dog. →
 • John sees somebody X. X hates a dog of John.
NP ACE: ideas

- Conciseness (shorter sentences)
 - achieved by using relative clauses, instead of full clauses and explicit anaphoric references
- Focus only on implications (paraphrased as every-sentences)
 - support widespread rule and ontology language patterns
 - superset of the OWL verbalizer output language
The NP ACE language

- *If-then* sentences are represented as *every*-sentences
 - Boolean combinations of sentences are expressed by relative clauses
 - *if*-part and *then*-part must share arguments
 - Passive must be often used

- Cannot express all ACE constructs, missing:
 - NP pre-modifiers, VP modifiers, possessive constructs, ditransitive verbs, NP conjunction, numbers and strings, embedded *if-then* sentences

- No overlap with Core ACE
NP ACE: examples

• Argument sharing
 – If a man owns a dog then a woman owns a cat. →
 – FAIL

• Usage of passive
 – If a man owns a car then there is a woman who hates the car. →
 – Every car that is owned by a man is hated by a woman.
Implementation

• Paraphrase as a verbalization of the DRS of the input text
 – i.e. ACE1 → DRS1 → ACE2, where
 – ACE1 → DRS1 is an ACE parser
 – DRS1 → ACE2 is a DRS verbalizer

• Can automatically check if the paraphrase is correct, by ACE2 → DRS2, and checking DRS1 and DRS2 for structural equivalence
Core ACE verbalizer

• Applies a relatively direct transformation of DRS conditions into ACE sentences
 – *predicate*-conditions (i.e. conditions that correspond to verbs and their complements) map to simple ACE sentences
 – embedded DRSs map to complex sentences (e.g. negated or *if*-then-sentences)
 – content word lemmas are mapped to surface forms using the same lexicon that was used to obtain the DRS

• The order of sentences that originate from the same DRS is fixed so that sentences that mention the same nouns are positioned next to each other (in the conjunction).
 – This will result in easier to read sentences.
Example

- It is false that Mary likes John.
Core ACE verbalizer coverage

- Tested on APE regression test set (2421 ACE→DRS mappings)
- 88% correctly paraphrased
- 9% of the paraphrases identical to the original
- Not covered
 - *each of* plurals
 - complex forms of questions
 - ...
NP ACE verbalizer

• Only applied to DRS implications which furthermore must share at least one discourse referent between the *if*-box and the *then*-box.
 – Only such implications can be expressed as *every*-sentences.

• The *predicate*-conditions in both the *if*-box and the *then*-box are "rolled up" starting with the condition that contains a shared discourse referent.

• The resulting structures are directly mapped to noun phrases that are possibly modified by (a coordination or negation of) relative clauses.
Problems

• Paraphrase sometimes identical to the original
 – Examples
 • John likes Mary.
 • Every airline charges a passenger with an overweight-luggage.
 – Solution: use other means of explanation

• Handling complex scopes
 – {Every dog is an animal} or {there is a cat}.
 – If there is a dog X1 then {{the dog X1 is an animal} or {there is a cat}}.
Availability

• Two DRS verbalizers (into Core ACE and into NP ACE) are included with the Attempto Parsing Engine (APE)
 – http://attempto.ifi.uzh.ch/site/downloads/
Conclusions

• Two non-overlapping fragments, often offering two alternative formulations of the original text
• Useful form of feedback for the user
 – simplifies complex structures
 – teaches interpretation rules
 – useful for DRS checking (for an ACE parser developer)
Thank You!