Paraphrasing controlled English texts

Kaarel Kaljurand
CNL 2009, Marettimo, Italy
2009-06-09

Outline

- What is a paraphrase?
- Usage and requirements
- Paraphrasing ACE by DRS verbalization
 - DRS → Core ACE
 - DRS → NP ACE
- Encountered problems, conclusions

Tool support for CNLs

- CNLs have formal syntax/semantics
 - just like programming languages
- thus enable various useful supporting tools
 - syntax highlighting, syntax error
 pinpointing, auto-completion, consistency
 checking, refactoring, etc., etc.
- A paraphraser is one of such tools

Definition

- A paraphrase of a text is its reformulation (in the same language) such that the meaning of the text is preserved.
 - Paraphrase cannot use meta-level such as color, font-size, full NL
 - We have to define what is meant by "meaning"
- Additionally, the text and its paraphrase should be syntactically different.
 - The language should contain syntactic sugar
- Example:
 - Mary is liked by everybody.
 - If there is somebody X then X likes Mary.

Possible uses

- Make the interpretation of the text more clear
 - point out constructs that are potentially misunderstood
- Reformulate the text so that it becomes easier to read
 - bring related sentences closer together
- Highlight constructs that are not supported in the underlying logic
 - e.g. the underlying DRS cannot be expressed in OWL

•

- Paraphrase should be different from the original (by definition)
 - How different? Similar sentence structure can help the user to better relate the paraphrase to the original.
- Mary is liked by John and she likes him.
 - Mary is liked by John and Mary likes John.
 - John likes Mary. Mary likes John.

- Paraphrase language should be syntactically small
 - paraphrasing as "normalization" into a core subset of the full CNL
 - the (interpretation of the) core subset is probably easier to learn for the user

- Paraphrase should improve readability
- Readability of a single sentence
 - Every book is a document that an author who a publisher likes writes.
 - Every book is a document that is written by an author who is liked by a publisher.
 - If there is a book X then X is a document and an author Y writes X and a publisher likes Y.
- Readability of the complete text
 - e.g. reorder sentences to avoid long-distance anaphoric references

- Paraphrase should teach the interpretation rules of the CNL
 - i.e. transform into a form that is less ambiguous in parent NL
- A dog is an animal.
 - There is a dog. The dog is an animal. (a is an existential quantifier)
- Every dog is an animal.
 - If there is a dog then the dog is an animal. (every corresponds to if-then)

Paraphrasing ACE texts

- Meaning of ACE texts given by the DRS
- DRS structural equivalence:
 - e.g. reordering DRS conditions is allowed
 - e.g. renaming variables and changing sentence/token IDs is allowed
 - e.g. removing double negation is not
- ACE provides syntactic sugar
 - various forms of coordination and negation, every vs if-then, of vs Saxon genitive, various forms of anaphoric references, sentence reordering
- Two paraphrase languages so far
 - Core ACE
 - NP ACE

DRS example

```
[]

[A, B, C]

object(A, territory, countable, na, eq, 1)-1/2
object(B, country, countable, na, geq, 2)-1/10

predicate(C, border, B, A)-1/5

[]

[D, E]

object(D, enclave, countable, na, eq, 1)-1/13

predicate(E, be, A, D)-1/11
```

- No territory that is bordered by at least 2 countries is an enclave.
- If at least 2 countries border a territory X1 then it is false that the territory X1 is an enclave.

Core ACE: ideas

- Use the smallest syntactic subset of ACE (i.e. the core)
- "Flatten" the structure of sentences
 - remove relative clauses
 - split sentence conjunction into multiple sentences
- Fix the order of
 - sentences
 - elements in coordination
 - adjuncts (prepositional phrases and adverbs)

The Core ACE language

- Defined by removing some ACE constructs such that the semantic expressivity is not affected
 - quantifiers: every, each, no, for each, ... $(\rightarrow if$ -then)
 - passive (X is seen by $Y \rightarrow Y$ sees X)
 - Saxon genitive (John's dog → a dog of John)
 - VP negation
 - A man does not run. →
 - There is a man. It is false that the man runs.
 - relative clauses
 - Every man who loves a woman who loves him smiles. →
 - If a woman X1 loves a man X2 and the man X2 loves the woman X1 then the man X2 smiles.
 - pronouns
 - John sees somebody. He hates John's dog. →
 - John sees somebody X. X hates a dog of John.

NP ACE: ideas

- Conciseness (shorter sentences)
 - achieved by using relative clauses, instead of full clauses and explicit anaphoric references
- Focus only on implications (paraphrased as every-sentences)
 - support widespread rule and ontology language patterns
 - superset of the OWL verbalizer output language

The NP ACE language

- If-then sentences are represented as everysentences
 - Boolean combinations of sentences are expressed by relative clauses
 - if-part and then-part must share arguments
 - Passive must be often used
- Cannot express all ACE constructs, missing:
 - NP pre-modifiers, VP modifiers, possessive constructs, ditransitive verbs, NP conjunction, numbers and strings, embedded *if-then* sentences
- No overlap with Core ACE

NP ACE: examples

- Argument sharing
 - If a man owns a dog then a woman owns a cat. →
 - FAIL
- Usage of passive
 - If a man owns a car then there is a woman who hates the car. →
 - Every car that is owned by a man is hated by a woman.

Implementation

- Paraphrase as a verbalization of the DRS of the input text
 - i.e. ACE1 \rightarrow DRS1 \rightarrow ACE2, where
 - ACE1 → DRS1 is an ACE parser
 - DRS1 → ACE2 is a DRS verbalizer
- Can automatically check if the paraphrase is correct, by ACE2 → DRS2, and checking DRS1 and DRS2 for structural equivalence

Core ACE verbalizer

- Applies a relatively direct transformation of DRS conditions into ACE sentences
 - predicate-conditions (i.e. conditions that correspond to verbs and their complements) map to simple ACE sentences
 - embedded DRSs map to complex sentences (e.g. negated or ifthen-sentences)
 - content word lemmas are mapped to surface forms using the same lexicon that was used to obtain the DRS
- The order of sentences that originate from the same DRS is fixed so that sentences that mention the same nouns are positioned next to each other (in the conjunction).
 - This will result in easier to read sentences.

Example

```
[]

[A]

predicate(A, like, named(Mary), named(John))-1/4
```

It is false that Mary likes John.

Core ACE verbalizer coverage

- Tested on APE regression test set (2421 ACE→DRS mappings)
- 88% correctly paraphrased
- 9% of the paraphrases identical to the original
- Not covered
 - each of plurals
 - complex forms of questions

— ...

NP ACE verbalizer

- Only applied to DRS implications which furthermore must share at least one discourse referent between the *if*-box and the *then*-box.
 - Only such implications can be expressed as *every*-sentences.
- The predicate-conditions in both the if-box and the then-box are "rolled up" starting with the condition that contains a shared discourse referent.
- The resulting structures are directly mapped to noun phrases that are possibly modified by (a coordination or negation of) relative clauses.

Problems

- Paraphrase sometimes identical to the original
 - Examples
 - John likes Mary.
 - Every airline charges a passenger with an overweightluggage.
 - Solution: use other means of explanation
- Handling complex scopes
 - {Every dog is an animal} or {there is a cat}.
 - If there is a dog X1 then {{the dog X1 is an animal} or {there is a cat}}.

Availability

- Two DRS verbalizers (into Core ACE and into NP ACE) are included with the Attempto Parsing Engine (APE)
 - http://attempto.ifi.uzh.ch/site/downloads/

Conclusions

- Two non-overlapping fragments, often offering two alternative formulations of the original text
- Useful form of feedback for the user
 - simplifies complex structures
 - teaches interpretation rules
 - useful for DRS checking (for an ACE parser developer)

Thank You!