
CNL 2009, Maretimmo, 9/6/09 (1)

Exploring Controlled English OBDA

Camilo Thorne, Diego Calvanese

KRDB Centre

Free University of Bozen-Bolzano

Via della Mostra 4

39100 - Italy

The Problem

Exploring Controlled English OBDA (2)Exploring Controlled English OBDA (2)

The Problem

Ontology-based systems [Staab&Studer 2004] aim at accessing and querying (possibly
from the web) repositories of heterogenous data.

Examples: data integration systems, knowledge portals, ontology-based systems for
semantically annotated data, etc. [Staab&Studer]

We denote such systems as ontology-based data access systems (OBDASs) [Cal-
vanese et al. 2005]

In such scenarios, an ontology layer on top of a data layer provides a global conceptual
model of potentially incomplete sources over which formal queries (SQL, SPARQL,
etc.) are formulated

DB

Ontology

Q

(data
layer)

(conceptual
layer)

The semantics of such systems can be

characterized in terms of

FO interpretations

Querying takes place under

the open world assumption (OWA)

Ontology LanguagesOntology Languages

Exploring Controlled English OBDA (3)Exploring Controlled English OBDA (3)

Ontology Languages

We will focus on ontologies represented in fragments of the W3C ontology language
OWL

Significant fragments of OWL correspond to widely used conceptual modelling for-
malisms such as UML class diagrams

Ontology LanguagesOntology Languages

Exploring Controlled English OBDA (3)Exploring Controlled English OBDA (3)

Ontology Languages

We will focus on ontologies represented in fragments of the W3C ontology language
OWL

Significant fragments of OWL correspond to widely used conceptual modelling for-
malisms such as UML class diagrams

salary: Integer

Employee

Manager

Area Manager

Project Manager

Project

3..*

1..1

1..1

develops

manages

1..*

{disjoint, complete}

The Employee ontology

characterizes the domain

of employees, specifying

(i) the classes, relations and

attributes (= the terminology)

into which the domain is structured

(ii) the constraints (IS-A,

participation, cardinality)

all (incomplete) sources satisfy

Controlled LanguagesControlled LanguagesControlled Languages

Exploring Controlled English OBDA (4)Exploring Controlled English OBDA (4)

Controlled Languages

To improve the usability of interfaces to ontologies and OBDASs controlled languages
[Bernstein et al. 2005, Sowa 2004] have been proposed

They have been shown to outperform (in such terms) interfaces based on keywords or
visual query languages [Bernstein et al. 2007]

They provide a trade-off between the rigor of formal ontology/query languages and NL

This is related to work on NLIs to databases [Androstopoulos 1995] and CL interfaces
to databases [Wintner et al. 2006]

DB

Ontology

CL interface

Q

(NL
layer)

(data
layer)

(conceptual
layer)

Controlled LanguagesControlled LanguagesControlled Languages

Exploring Controlled English OBDA (4)Exploring Controlled English OBDA (4)

Controlled Languages

To improve the usability of interfaces to ontologies and OBDASs controlled languages
[Bernstein et al. 2005, Sowa 2004] have been proposed

They have been shown to outperform (in such terms) interfaces based on keywords or
visual query languages [Bernstein et al. 2007]

They provide a trade-off between the rigor of formal ontology/query languages and NL

This is related to work on NLIs to databases [Androstopoulos 1995] and CL interfaces
to databases [Wintner et al. 2006]

DB

Ontology

CL interface

Q

(NL
layer)

(data
layer)

(conceptual
layer)

Declarations translate compositionally into

ontologies and questions into formal queries

Their semantic complexity [Pratt 2003] reduces to

the computational properties of the OBDASs

⇒ We should study the computational

complexity of CLs w.r.t. OBDA

Ontology LanguagesOntology LanguagesOntology LanguagesOntology Languages

Exploring Controlled English OBDA (5)Exploring Controlled English OBDA (5)

Ontology Languages

Semantic Web Language Description Logics

(OWL) + CL

¡owl:Class rdf:about=”#Employee”¿

¡rdfs:subClassOf¿

¡owl:Restriction¿

¡owl:onProperty

rdf:resource=”#develops”/¿

¡owl:someValuesFrom

rdf:resource=”#Project”/¿

¡/owl:Restriction¿

¡/rdfs:SubclassOf¿

¡/owl:Class¿

Employee ⊑ ∃develops:Project

Every employee develops

some project

OWL is a machine-readable language (embedded in RDF and XML)

CLs are human-readable, yet as unambigous as DLs

OutlineOutlineOutlineOutlineOutline

Exploring Controlled English OBDA (6)Exploring Controlled English OBDA (6)

Outline

1. The Problem
(i) Ontology languages
(ii) Controlled Languages

1. OBDA and Query Answering
(i) ALCI ontologies and conjunctive queries
(ii) Certain answers and query answering
(iii) DL-Lite ontologies

2. Controlled Languages
(i) DL-English and Lite-English
(ii) The {IS-Ai}i∈[0,7] fragments

3. Computational Complexity
(i) Expressing query answering
(ii) Tree-shaped conjunctive queries
(iii) Data complexity of QA

4. Conclusions and further work

ALCI OntologiesALCI OntologiesALCI OntologiesALCI OntologiesALCI OntologiesALCI Ontologies

Exploring Controlled English OBDA (7)Exploring Controlled English OBDA (7)

ALCI Ontologies

In ALCI, roles R and concepts C are formed according to the syntax

R → P | P−

C → ⊤ | A | ∃R:C | ¬C | C ⊓ C′

ALCI OntologiesALCI OntologiesALCI OntologiesALCI OntologiesALCI OntologiesALCI Ontologies

Exploring Controlled English OBDA (7)Exploring Controlled English OBDA (7)

ALCI Ontologies

In ALCI, roles R and concepts C are formed according to the syntax

R → P | P−

C → ⊤ | A | ∃R:C | ¬C | C ⊓ C′

An assertion is an expression C ⊑ C′

A terminology (TBox) T is a set of assertions

An ontology is a pair 〈T ,A〉, where A is a set of ground facts (ABox)

ALCI OntologiesALCI OntologiesALCI OntologiesALCI OntologiesALCI OntologiesALCI Ontologies

Exploring Controlled English OBDA (7)Exploring Controlled English OBDA (7)

ALCI Ontologies

In ALCI, roles R and concepts C are formed according to the syntax

R → P | P−

C → ⊤ | A | ∃R:C | ¬C | C ⊓ C′

An assertion is an expression C ⊑ C′

A terminology (TBox) T is a set of assertions

An ontology is a pair 〈T ,A〉, where A is a set of ground facts (ABox)

Semantics is given by FO interpretations D := 〈∆, ·D〉

AD ⊆ ∆

⊤D := ∆

(∃R:C)D := {d | exists d ′ s.t.
〈d, d ′〉 ∈ RD and d ′ ∈ CD}

(¬C)D := ∆− CD

(C ⊓ C′)D := CD ∩ C′D

PD ⊆ ∆× ∆
(R−)D := {〈d, d ′〉 | 〈d ′, d〉 ∈ RD}

D |= C ⊑ C′ iff CD ⊆ C′D

D |= 〈T ,A〉 iff
i. D |= T
ii. D |= A

Mod(〈T ,A〉) := {D | D |= 〈T ,A〉}

Conjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive Queries

Exploring Controlled English OBDA (8)Exploring Controlled English OBDA (8)

Conjuntive Queries

A conjunctive query (CQ) is a query of the form

q(~x)← ∃~yΦ(~x, ~y)

where q(~x) is the head, ~x is a sequence of n distinguished variables and ∃~yΦ(~x, ~y)
is a conjunction of existentially quantified atoms called body

Conjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive Queries

Exploring Controlled English OBDA (8)Exploring Controlled English OBDA (8)

Conjuntive Queries

A conjunctive query (CQ) is a query of the form

q(~x)← ∃~yΦ(~x, ~y)

where q(~x) is the head, ~x is a sequence of n distinguished variables and ∃~yΦ(~x, ~y)
is a conjunction of existentially quantified atoms called body

They correspond to SQL SELECT-PROJECT-JOIN queries

Conjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive QueriesConjuntive Queries

Exploring Controlled English OBDA (8)Exploring Controlled English OBDA (8)

Conjuntive Queries

A conjunctive query (CQ) is a query of the form

q(~x)← ∃~yΦ(~x, ~y)

where q(~x) is the head, ~x is a sequence of n distinguished variables and ∃~yΦ(~x, ~y)
is a conjunction of existentially quantified atoms called body

They correspond to SQL SELECT-PROJECT-JOIN queries

EXAMPLE:

salary: Integer

Employee

Manager

Area Manager

Project Manager

Project

3..*

1..1

1..1

develops

manages

1..*

{disjoint, complete}

Which manager is a project manager
that manages some project?

q(x) ← Manager(x) ∧ ProjectManager(x)
∧∃y(manages(x, y) ∧ Project(y))

SELECT Manager.MName
FROM Manager, ProjectManager, manages, Project
WHERE Manager.MName = ProjectManager.MName
AND Manager.MName = manages.MName
AND Project.PName = manages.PName

Certain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers Semantis

Exploring Controlled English OBDA (9)Exploring Controlled English OBDA (9)

Certain Answers Semantis

In OBDASs, CQs are formulated over the atomic concepts and roles of the ontology

The certain answers of a CQ q over an ontology 〈T ,A〉 are:

cert(q,A, T) := {~d | 〈T ,A〉 |= q(~d)}

NB: It is essentially a FO entailment problem!

⇒ asking q to an ontology = asking q to all the models of the ontology

Certain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers Semantis

Exploring Controlled English OBDA (9)Exploring Controlled English OBDA (9)

Certain Answers Semantis

In OBDASs, CQs are formulated over the atomic concepts and roles of the ontology

The certain answers of a CQ q over an ontology 〈T ,A〉 are:

cert(q,A, T) := {~d | 〈T ,A〉 |= q(~d)}

NB: It is essentially a FO entailment problem!

⇒ asking q to an ontology = asking q to all the models of the ontology

Inspired by [Vardi 1982] we consider different computational complexity measures

– if A is the only input ⇒ data complexity
– if q is the only input ⇒ query complexity
– if T is the only input ⇒ schema complexity
– if both q and 〈T ,A〉 are inputs ⇒ combined complexity

Certain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers SemantisCertain Answers Semantis

Exploring Controlled English OBDA (9)Exploring Controlled English OBDA (9)

Certain Answers Semantis

In OBDASs, CQs are formulated over the atomic concepts and roles of the ontology

The certain answers of a CQ q over an ontology 〈T ,A〉 are:

cert(q,A, T) := {~d | 〈T ,A〉 |= q(~d)}

NB: It is essentially a FO entailment problem!

⇒ asking q to an ontology = asking q to all the models of the ontology

Inspired by [Vardi 1982] we consider different computational complexity measures

– if A is the only input ⇒ data complexity
– if q is the only input ⇒ query complexity
– if T is the only input ⇒ schema complexity
– if both q and 〈T ,A〉 are inputs ⇒ combined complexity

NB: The query answering problem (QA) is the associated decision problem

⇒ by restricting (or expanding) the expressivity of T , we obtain different computational
properties

DL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite Ontologies

Exploring Controlled English OBDA (10)Exploring Controlled English OBDA (10)

DL-Lite Ontologies

A fragment of ALCI optimized for data access in OBDASs is DL-Lite

In DL-Lite concepts are partitioned into right and left concepts:

R → P | P−

Cl → A | ∃R:⊤
Cr → Cl | ¬Cl | Cr ⊓ C

′
r | ∃R:Cr

Assertions (in TBoxes) are now of the form Cl ⊑ Cr

QA (w.r.t. CQs) is optimal ⇒ LogSpace in data complexity

QA for ALCI is intractable ⇒ coNP-complete in data complexity

⇒ DL-Lite scales to data!

DL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite OntologiesDL-Lite Ontologies

Exploring Controlled English OBDA (11)Exploring Controlled English OBDA (11)

DL-Lite Ontologies

DL-Lite captures the main features of conceptual data models (UML class diagrams,
ER-diagrams, etc.)

salary: Integer

Employee

Manager

Area Manager

Project Manager

Project

develops

manages

1..*

{disjoint}

Manager ⊑ Employee
AreaManager ⊑ Manager

ProjectManager ⊑ Manager
AreaManager ⊑ ¬ProjectManager

∃develops ⊑ Employee

∃develops− ⊑ Project

Project ⊑ ∃develops−

∃manages ⊑ TopManager

∃manages− ⊑ Project
TopManager ⊑ ∃manages

Project ⊑ ∃manages−

Employee ⊑ ∃has:Salary

NB: in DL-Lite we cannot capture completeness of the hierarchy

Expressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-English

Exploring Controlled English OBDA (12)Exploring Controlled English OBDA (12)

Expressing ALCI ontologies with DL-English

We want to express in CL ontology languages and queries

CLs allow for a compositional semantics by which they map into some logic formalism

Compositionality motivates us to consider their semantic complexity [Pratt & Third
2005]

Semantic complexity is defined as the reasoning problems associated to their logic
formalisms

In the particular setting of OBDAS, this amounts to considering the different reasoning
problems relevant for ontologies

We are particularly interested in the query answering problem

⇒ how difficult is it to access data from an ontology with CL?

⇒ does this task scale to data?

Expressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-English

Exploring Controlled English OBDA (13)Exploring Controlled English OBDA (13)

Expressing ALCI ontologies with DL-English

Following DL conventions [Baader et al. 2004] we associate

– word categories N, Adj and IV to atomic concepts
– category TV to role names
– recursive constituents to arbitrary concepts

Every Nom VP Everybody who VP VP
︷ ︸︸ ︷

λC.λC′.C ⊑ C′
︷︸︸︷

C
︷︸︸︷

C′
︷ ︸︸ ︷

λC.λC′.C ⊑ C′
︷︸︸︷

C
︷︸︸︷

C′

No manager who manages some project that does not make some money is shrewd.
Manager⊓∃manages:(Project⊓¬ (∃make:Money))⊑¬Shrewd

Nobody manages only projects
∀manages:Project⊑ ⊥

Anybody who manages some project manages some big project or small project
∃manages:Project⊑∃manages:((Project⊓Big)⊔ ((Project⊓Small)

All DL-English (complete) sentences translate into an ALCI assertion and conversely

Expressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-English

Exploring Controlled English OBDA (14)Exploring Controlled English OBDA (14)

Expressing ALCI ontologies with DL-English

S→ NPVP NP→ DetNom
VP→ TVNP VP→ is a Nom VP→ is TV by NP NP→ ProRelp VP
VP→ is Adj VP→ IV VP→ is NegTV by NP NP→ Pro
VP→ does Neg IV VP→ is Neg a Nom Nom→ NomRelp VP Nom→ AdjNom
VP→ is Neg Adj VP→ VPCrdVP Nom→ NomCrdNom Nom→ N

τ (VP) := τ (NP)(τ (TV)) τ (VP) := τ (Crd)(τ (VP))(τ (VP)) τ (S) := τ (NP)(τ (VP))
τ (VP) := τ (Neg)(τ (NP)(τ (TV))) τ (VP) := τ (Neg)(τ (Adj))
τ (VP) := τ (Neg)(τ (Nom)) τ (VP) := τ (Neg)(τ (IV)) τ (VP) := τ (Adj)
τ (NP) := τ (Pro) τ (VP) := τ (IV) τ (VP) := τ (Nom)
τ (NP) := τ (Det)(τ (Nom)) τ (NP) := τ (Pro)(τ (Relp)(τ (VP))) τ (Nom) := τ (N)
τ (Nom) := τ (Nom)(τ (Relp)(τ (VP))) τ (Nom) := τ (Crd)(τ (Nom))(τ (Nom)) τ (Nom) := τ (Adj)(τ (Nom))

Pro→ anybody τ (Pro) := λC.λC′.C ⊑ C′: (e → t)→ ((e → t)→ t)
Pro→ somebody τ (Pro) := λR.∃R: (e → (e → t))→ (e → t)
Pro→ nobody τ (Pro) := λC.λC′.C ⊑ ¬C′: (e → t)→ ((e → t)→ t)
Pro→ nobody τ (Pro) := λR.¬∃R: (e → (e → t))→ (e → t)
Crd→ and τ (Crd) := λC.λC′.C ⊓ C′: (e → t)→ ((e → t)→ (e → t))
Crd→ or τ (Crd) := λC.λC′.C ⊔ C′: (e → t)→ ((e → t)→ (e → t))
Relp→ who τ (Relp) := λC.C: (e → t)→ (e → t)
Neg→ not τ (Neg) := λC.¬C: (e → t)→ (e → t)
Pro→ only τ (Pro) := λC.λR.∀R:C: (e → t)→ ((e → (e → t)→ (e → t)
Pro→ everybody τ (Pro) := λC.⊤ ⊑ C: (e → t)→ t
Pro→ nobody τ (Pro) := λC.C ⊑ ⊥: (e → t)→ t
Det→ some τ (Det) := λC.λR.∃R:C: (e → t)→ ((e → (e → t)→ (e → t)
Det→ every τ (Det) := λC.λC′.C ⊑ C′: (e → t)→ ((e → t)→ t)
Det→ no τ (Det) := λC.λC′.C ⊑ ¬C′: (e → t)→ ((e → t)→ t)

Expressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-English

Exploring Controlled English OBDA (15)Exploring Controlled English OBDA (15)

Expressing ALCI ontologies with DL-English

〈VP, α, τ, Γ 〉

〈TV · NP, β(γ), app(τ ′, τ ′′), Γ ′ ∪ Γ ′′〉

〈TV, β, τ ′, Γ ′〉

〈loves, loves, e → (e → t), ∅〉

〈NP, γ, τ ′′, Γ ′′〉

〈Det · N, δ(η), app(τ ′′′, τ ′′′′), Γ ′′′ ∪ Γ ′′′′〉

〈Det, δ, τ ′′′, Γ ′′′〉

〈only, λP.λR.∃R:P, (e → t)→ ((e → e)→ t)→ (e → t)), ∅〉

〈N, η, τ ′′′′, Γ ′′′′〉

〈man,Man, e → t, ∅〉

A succesful derivation for the VP ”loves only men”
⇒ types unify

Expressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-EnglishExpressing ALCI ontologies with DL-English

Exploring Controlled English OBDA (16)Exploring Controlled English OBDA (16)

Expressing ALCI ontologies with DL-English

〈VP, α, τ, Γ 〉

〈TV · NP, β(γ), app(τ ′, τ ′′), Γ ′ ∪ Γ ′′〉

�

〈TV, β, τ ′, Γ ′〉

〈loves, loves, e → (e → t), ∅〉

〈NP, γ, τ ′′, Γ ′′〉

〈Det · N, δ(η), app(τ ′′′, τ ′′′′), Γ ′′′ ∪ Γ ′′′′〉

〈Det, δ, τ ′′′, Γ ′′′〉

〈every, λP.λQ.P ⊑ Q, (e → t)→ ((e → t)→ t), ∅〉

〈N, η, τ ′′′′, Γ ′′′′〉

〈man,Man, e → t, ∅〉

Failed derivation for the VP ”loves every man”
⇒ types e → (e → t) and e → t do not unify.

Expressing DL-Lite ontologies with Lite-EnglishExpressing DL-Lite ontologies with Lite-EnglishExpressing DL-Lite ontologies with Lite-EnglishExpressing DL-Lite ontologies with Lite-EnglishExpressing DL-Lite ontologies with Lite-EnglishExpressing DL-Lite ontologies with Lite-EnglishExpressing DL-Lite ontologies with Lite-EnglishExpressing DL-Lite ontologies with Lite-EnglishExpressing DL-Lite ontologies with Lite-EnglishExpressing DL-Lite ontologies with Lite-EnglishExpressing DL-Lite ontologies with Lite-English

Exploring Controlled English OBDA (17)Exploring Controlled English OBDA (17)

Expressing DL-Lite ontologies with Lite-English

In Lite-English, DL-English Noms and VPs are constrained to match left (= subject
Noms) and right concepts (= predicate VPs)

The only negation allowed is introduced by ”no”

code: Integer

salary: Integer

Employee

Manager

Area Manager

Project Manager

name: String

Project

develops

manages

1..*

{disjoint}

Every area manager is a manager
Every project manager is a manager
Every manager is an employee

No project manager is an area manager

Anybody who develops something
is an employee

Anything that is developed by
somebody is a project

Anybody who manages something
is a project manager

Anything that is managed by
somebody is a project

Every project is developed
by some employee

Every employee has some salary
Every employee has some code
Every project has some name

DL-Lite is expressed by Lite-English [Bernardi et al. 2007]

Related Delarative CLsRelated Delarative CLsRelated Delarative CLsRelated Delarative CLsRelated Delarative CLsRelated Delarative CLsRelated Delarative CLsRelated Delarative CLsRelated Delarative CLsRelated Delarative CLsRelated Delarative CLsRelated Delarative CLs

Exploring Controlled English OBDA (18)Exploring Controlled English OBDA (18)

Related Delarative CLs

CL (English) Maps to Goal

ACE [Fuchs 2005] FO KR/User specifications

ACE-OWL [Kaaljurand 2007] OWL-DL Ontology authoring + querying

PENG [Schwitter 2003] OWL-DL Ontology authoring + querying

SOS [Schwitter2008] OWL-DL Ontology authoring + querying

CLCE [Sowa2004] FOL Knowledge representation

AECMA [Unwalla 2005] no User specifications

English Query (EQ) [Blum 1999] SQL DB querying/management

OWL-CNL [Schwitter 2006] OWL-DL Ontology authoring

Easy English [Bernth 1998] no User specifications

λ-SQL [Winter 2006] SQL DB querying

nRQL [Schwitter 2008] FO queries Ontology querying

Rabbit [Schwitter2008] OWL Ontology authoring

ACE-PQL [Bernstein 2005] PQL Ontology querying

QE-III [Clifford 1987] IL DB querying

(an overview of some controlled fragments of English)

Expressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QA

Exploring Controlled English OBDA (19)Exploring Controlled English OBDA (19)

Expressing QA

A compositional translation τ(·) maps a fragment of NL into a fragment of logic
⇒ FO + the λ-abstraction, λ-application, types and β-reduction of higher order logic
(HOL) [Montague 1970]

Such logic expressions are known as meaning representations (MRs)

Modulo τ(·) we can speak about the semantic complexity of a fragment of English
[Pratt 2003]

Expressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QA

Exploring Controlled English OBDA (19)Exploring Controlled English OBDA (19)

Expressing QA

A compositional translation τ(·) maps a fragment of NL into a fragment of logic
⇒ FO + the λ-abstraction, λ-application, types and β-reduction of higher order logic
(HOL) [Montague 1970]

Such logic expressions are known as meaning representations (MRs)

Modulo τ(·) we can speak about the semantic complexity of a fragment of English
[Pratt 2003]

Let L be an ontology language, Q a query language, to express QA in controlled
English

(i) define a grammar GL with τ (·) s.t. τ (L(GL)) = L

(ii) define a grammar GQ with τ
′
(·) s.t. τ

′
(L(GQ)) = Q

Such ontology/query language expressions become the meaning representations (MRs)
of the CL utterances

Expressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QA

Exploring Controlled English OBDA (20)Exploring Controlled English OBDA (20)

Expressing QA

A CQ that expresses an ALCI concept is called a tree-shaped conjunctive query
(TCQ)

To express them in CL we use, as function words,

– the determiner ”some” and the pronouns ”something, somebody” (existential)
– relative pronouns and VP-coordination (conjunction)
– interrogative pronouns such as ”which, what, who,” (etc.)

Expressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QAExpressing QA

Exploring Controlled English OBDA (20)Exploring Controlled English OBDA (20)

Expressing QA

A CQ that expresses an ALCI concept is called a tree-shaped conjunctive query
(TCQ)

To express them in CL we use, as function words,

– the determiner ”some” and the pronouns ”something, somebody” (existential)
– relative pronouns and VP-coordination (conjunction)
– interrogative pronouns such as ”which, what, who,” (etc.)

EXAMLE:

Which manager is a project manager that manages some project

that is developed by some employee?

q(x)← Manager(x) ∧ ProjectManager(x) ∧ ∃y(manages(x, y) ∧ Project(y)

∃z(develops(z, y) ∧ Employee(z)) ∧ Project(y)))

λxe .Manager(x) ∧ ProjectManager(x) ∧ ∃y(manages(x, y) ∧ Project(y)

∃z(develops(z, y) ∧ Employee(z)) ∧ Project(y))): e → t

Manager,
ProjectManager

Project Employee

manages develops

The Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLs

Exploring Controlled English OBDA (21)Exploring Controlled English OBDA (21)

The Family {IS-Ai}i∈[0,7] of CLs

We are interested in refining our analysis regarding ontology languages

We want to single out

– the maximal CLs that are tractable w.r.t. data complexity
– the minimal CLs that are intractable w.r.t. data complexity

The Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLs

Exploring Controlled English OBDA (21)Exploring Controlled English OBDA (21)

The Family {IS-Ai}i∈[0,7] of CLs

We are interested in refining our analysis regarding ontology languages

We want to single out

– the maximal CLs that are tractable w.r.t. data complexity
– the minimal CLs that are intractable w.r.t. data complexity

We adopt as strategy restricting on DL-English

Utterances in each fragment translate into assertions Cl ⊑ Cr

Hence, we partition [Bernardi et al. 2007] Nom and VP into

– left components: Noml , VPl
– right components: Nomr , VPr

⇒ this allows for a fine-grained data complexity analysis

The Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLs

Exploring Controlled English OBDA (22)Exploring Controlled English OBDA (22)

The Family {IS-Ai}i∈[0,7] of CLs

Fragment Assertions Sample Sentence(s)

IS-A0 A ⊑ A1⊓ · · · ⊓An ⇒ Every project manager is a manager and is an employee.

IS-A1 A ⊑ ∀P :A′ ⇒ Every project manager manages only projects.

IS-A2 A1⊓ · · · ⊓An ⊑ ∀P :(A1⊓ · · · ⊓Am) ⇒ Every good manager manages only good projects.

IS-A3 ∃P :A ⊑ A1⊓ · · · ⊓An ⇒ Anybody who manages some project

is an employee and is a manager.

∃P−:A ⊑ A1⊓ · · · ⊓An ⇒ Anything that is managed by some important manager

is a big project.

A ⊑ ∃P ⇒ Every manager manages something.

IS-A4 A1⊓ · · · ⊓An ⊑ A1⊓ · · · ⊓Am ⇒ Every cruel manager is a bad manager.

∃P :(A1⊓ · · · ⊓An) ⊑ A1⊓ · · · ⊓Am ⇒ Anybody who manages some bankrupt project

is a bad manager.

IS-A5 ∀P :A ⊑ A1⊓ · · · ⊓An ⇒ Anybody who manages only projects is a

manager and a project manager.

IS-A6 A ⊑ A1⊔ · · · ⊔An ⇒ Every manager is a project manager or is an area manager.

IS-A7 ¬A ⊑ A1⊓ · · · ⊓An ⇒ Anybody who is not an area manager is an employee

who is a project manager.

The Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLsThe Family {IS-Ai}i∈[0,7] of CLs

Exploring Controlled English OBDA (23)Exploring Controlled English OBDA (23)

The Family {IS-Ai}i∈[0,7] of CLs

every Nomr VPl everybody who VPl VPr
︷ ︸︸ ︷

λCl .λCr .Cl ⊑ Cr
︷︸︸︷

Cl

︷︸︸︷

Cr
︷ ︸︸ ︷

λCl .λCr .Cl ⊑ Cr
︷︸︸︷

Cl

︷︸︸︷

Cr

Concept Cf Constituent αf Grammar Rules

A Nomf , VPf
∃P : A TV some Nomf , TV somebody who VPf VPf → is a Nomf | IV | is Adj
∃P− : A TV by some Nomf , TV by somebody who VPf Nomf → N
∀P : A TV only VPf , TV only who VPf

∃P TV something, TV somebody ∅

A1 ⊓ · · · ⊓ An AdjNomf ,Nomf who VPf VPf → is a Nomf | IV | is Adj
| VPf and VPf

Nomf and Nomf ,VPf and VPf Nomf → N | AdjNomf
| Nomf and Nomf

A1 ⊔ · · · ⊔ An VPf or VPf VPf → is a Nomf | IV | is Adj
| VPf and VPf

Nomf → N | Nomf and Nomf

¬A is not Adj, does not IV, is not a Nomf Nomf → N

Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)

Exploring Controlled English OBDA (24)Exploring Controlled English OBDA (24)

Complexity (w.r.t. TCQs)

SAT (KB) QA (data) QA (combined)

IS-A0 in PTime in LogSpace in PTime
IS-A1 in PTime NLogSpace-complete in PSpace
IS-A2 in PTime PTime-complete in PSpace
IS-A3 in PTime PTime-complete in NExpTime (*)
IS-A4 in PTime PTime-complete in PSpace
IS-A5 in PTime coNP-complete in NExpTime (*)
IS-A6 in PTime coNP-complete coNP-complete
IS-A7 in PTime coNP-complete coNP-complete

Only the first four exhibit tractable data complexity [Lutz & Krisnadhi 2007, Rosati
2007, Krötsh & Rudolph 2007]

Intractability is caused by our being able to express the partitioning of a domain
[Calvanese et al. 2006, Ortiz et al. 2008]

Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)

Exploring Controlled English OBDA (24)Exploring Controlled English OBDA (24)

Complexity (w.r.t. TCQs)

SAT (KB) QA (data) QA (combined)

IS-A0 in PTime in LogSpace in PTime
IS-A1 in PTime NLogSpace-complete in PSpace
IS-A2 in PTime PTime-complete in PSpace
IS-A3 in PTime PTime-complete in NExpTime (*)
IS-A4 in PTime PTime-complete in PSpace
IS-A5 in PTime coNP-complete in NExpTime (*)
IS-A6 in PTime coNP-complete coNP-complete
IS-A7 in PTime coNP-complete coNP-complete

Only the first four exhibit tractable data complexity [Lutz & Krisnadhi 2007, Rosati
2007, Krötsh & Rudolph 2007]

Intractability is caused by our being able to express the partitioning of a domain
[Calvanese et al. 2006, Ortiz et al. 2008]

NB: A maximal tractable CL w.r.t. data complexity is obtained by eliminating nega-
tion from DL-English

⇒ we express the DL ELI C → ⊤ | A | ∃R:C | C ⊓ C′

⇒ medical ontologies (e.g. GALEN) express mostly ELI assertions

Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)Complexity (w.r.t. TCQs)

Exploring Controlled English OBDA (25)Exploring Controlled English OBDA (25)

Complexity (w.r.t. TCQs)

SAT (KB) QA (data) QA (combined)
DL-Lite in PTime in LogSpace in PSpace (*)
ALCI ExpTime-complete coNP-complete ExpTime-complete
ALCQI ExpTime-complete coNP-complete ExpTime-complete
SHIF ExpTime-complete coNP-complete ExpTime-complete
SHOIN NExpTime-complete coNP-hard NExpTime-complete
SHROIQ NExpTime-hard coNP-hard NExpTime-hard

[Baader et al. 2004, Calvanese et al, 2005]

DL-Lite = Lite-English
ALCI = DL-English
SHIF [D] = ACE-OWL-Lite = OWL-Lite
SHOIN [D] = ACE-OWL-DL = OWL-DL
SROIQ[D] = ACE-OWL = OWL 1.1.

Conlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further workConlusions and further work

Exploring Controlled English OBDA (26)Exploring Controlled English OBDA (26)

Conlusions and further work

We have argued in favor of analysing the data complexity of CLs

This measure is relevant in the context of accessing information with CLs in ontology-
based systems

To do so, we have proposed to express in CL QA over ontologies

By considering the spectrum of CLs lying between ALCI and DL-Lite, the {IS-Ai}i∈[0,7]
fragments, we can see

– which fragments are maximal (w.r.t. tractability) and minimal (w.r.t.) intractability
– how each NL construct contributes to computational properties

⇒ a path that remains to be explored is to consider more expressive interrogative
CLs

– adding full negation, anaphora and comparatives may yield intractability of QA
(over DL-Lite ontologies)

– SQL aggregration functions does not (over DL-Lite ontologies)

