
Coral: Corpus Access in Controlled Language∗

Tobias Kuhn and Stefan Höfler

Institute of Computational Linguistics
University of Zurich, Switzerland

kuhntobias@gmail.com / hoefler@cl.uzh.ch

Abstract

In this paper, we present Coral, an interface in which complex corpus queries can
be expressed in a controlled subset of natural English. With the help of a predictive
editor, users can compose queries and submit them to the Coral system, which then
automatically translates them into formal AQL statements. We give an overview of
the controlled natural language developed for Coral and describes the functional-
ities of the predictive editor provided for it. It also reports on a user experiment
in which the system was evaluated. The results show that, with Coral, corpora of
annotated texts can be queried easier and faster than with the existing ANNIS in-
terface. Our system demonstrates that complex corpora can be accessed without
the need to learn a complicated formal query language.

1 Introduction
In recent years, the analysis of large corpora of annotated texts has come to play an
ever more important role in linguistic research. Not only has an increasing number of
corpora become available but the amount of linguistic information with which they are
annotated is on the rise too: corpora, nowadays, are annotated with part-of-speech tags,
syntactic structure and even semantic or other linguistic information.

More complex annotations also require more complex queries if they are to be ex-
ploited effectively. The problem is that it is often not possible to make the full complex-
ity of such queries available through simple, user-friendly web forms. At the moment,
linguists can thus only use this new type of corpora effectively if they invest a consid-
erable amount of time and effort into acquiring complicated and idiosyncratic formal
query languages. Examples of user-interfaces that embed such formal query languages
are XKWIC (Christ, 1994), TigerSEARCH (König et al., 2003), and more recently
ANNIS (Zeldes et al., 2009). Users with no particular background in computer science
would benefit from simpler and more intuitive corpus query interfaces, be they corpus

∗This manuscript will appear in Corpora, issue 7.2, Edinburgh University Press.

1



linguists or users employing corpora-based systems for language learning (Brill, 1993)
and for translation support1.

In this paper, we present a way to tackle this problem: we have developed Coral,
an interface in which complex corpus queries can be expressed in a controlled subset
of natural English. They are then automatically translated into the underlying formal
query language AQL (Zeldes et al., 2009). We show that with this interface, complex
corpora can be queried effectively without much training or prior knowledge.

The remainder of the paper falls into four main parts. In section 2, we introduce the
method of controlled natural language on which Coral is based. In section 3, we give
an overview of the syntax and semantics of Coral’s controlled English and introduce
its special editor. In section 4, we present an evaluation of our approach in the form of
a user experiment. In section 5, we place Coral in the context of related work.

2 Approach
The central idea of the Coral system is to employ the method of controlled natural
language to provide an interface for annotated text corpora in which users can compose
complex queries in a straightforward and intuitive way without much training or prior
knowledge.

Controlled natural languages (Wyner et al., 2010; Pool, 2006) are artificially de-
fined subsets of natural languages whose vocabulary, syntax and/or semantics have
been restricted in order to reduce or eliminate ambiguity and complexity. Some of
these languages are completely formal and can be automatically mapped to some sort
of logic. Their goal is to improve human-computer communication. Examples are ACE
(Fuchs et al., 2008), CLP (Clark et al., 2005) and PENG (Schwitter and Tilbrook,
2006). Other controlled natural languages are richer and less restricted, but cannot be
interpreted automatically. Caterpillar Fundamental English and ALCOGRAM are ex-
amples among many others (Adriaens and Schreors, 1992). Their goal is to improve
the communication among humans, especially non-native speakers of the respective
language.

The controlled natural language implemented in Coral is of the first type: it can
be mapped deterministically onto a formal representation, namely onto the ANNIS
Query Language AQL. Coral queries, as shown in Fig. 1, are thus at the same time
statements in natural English and statements in a formal query language. They combine
the intuitiveness of natural language with the precision of formal languages. From a
linguistic perspective, such an approach is thus of twofold interest: firstly, it offers a
novel way of querying annotated text corpora, and secondly, it uses natural language –
the very object of study of linguistics – as an interface to do so.

Statements in controlled natural language are easier to read and understand than
statements in formal languages (Kuhn, 2010b). However, they are still relatively hard
to write: without the help of adequate authoring tools, users need to keep in mind
the often numerous and complex restrictions of the controlled language they are using.
Two main approaches have been suggested to tackle this problem: conceptual authoring

1e.g. http://www.linguee.com/

2



Figure 1: A screenshot of the Coral web interface.

(Power et al., 2009) and predictive editors (Tennant et al., 1983; Schwitter et al., 2003).
In both approaches, a tool supports users in composing statements incrementally

and informs them about their possible next actions. With a conceptual authoring tool,
users do not have direct control of the text in the controlled language. They can only
trigger specific actions to change the underlying logic model. After each change, the
model is verbalised in the respective controlled language and shown to the user. With
a predictive editor, users have more fine-grained control of the actual syntax of the
statements. A statement is composed step by step, i.e. phrase by phrase or word by
word, from the start to the end of the statement. At each step, the user sees all possible
options of how to continue the statement. We chose the second approach and have
equipped the Coral system with such a predictive editor to support users in composing
queries in Coral’s controlled English (see section 3.2 below).

3 Coral
Coral allows for users to compose queries in a controlled natural language and auto-
matically translates them into AQL statements.2 Coral’s output can then be passed on
to ANNIS or any other AQL-compliant query engine (in case AQL gets implemented
in other systems in the future). We used version 2.1.7 of ANNIS and AQL. Coral is
implemented as a web-based application that can be easily accessed with a browser.

We will now (1) provide an overview of the syntax and semantics of Coral’s con-
trolled English, (2) introduce the predictive editor offered by the Coral system and (3)
briefly discuss the implementation of its grammar and lexicon.

2We chose AQL because it was specifically designed for the composition of complex queries on multi-
level linguistic corpora (Chiarcos et al., 2008).

3



3.1 Coral’s Controlled English
Fig. 1 shows a screenshot of the Coral web interface with a sample query. Coral queries
start with the phrase: Find all passages where. . . This initial phrase is followed by the
actual query conditions, which take the form of one or more sentences separated by
semicolons. The formal semantics of these query conditions is defined by a determin-
istic mapping to AQL.

The most basic component of an AQL query is one that refers to a specific token
(e.g. telephone). The following example shows such an AQL expression (a) and its
equivalent in Coral’s controlled English (c).

(1) a. token="telephone"

c. a token “telephone”

Both languages also support the shorter forms “telephone” or "telephone" respec-
tively. A search for a node with a specific attribute-value pair is realised as follows in
AQL and in Coral:

(2) a. cat="VP"

c. a structure has an attribute “cat” of value “VP”

Coral supports shortcuts for specific attributes or for whole attribute-value pairs in its
lexicon: e.g. category for cat or verb phrase for cat="VP" (cf. section 3.3). This option
makes it possible to phrase the respective queries in a more straightforward manner:

(3) a. cat="VP"

c1. a structure with the category “VP”

c2. a verb phrase

To express relations, AQL uses special symbols (e.g. .* for precedence) together with
relative addressing (#1 referring to the first of the introduced nodes, #2 to the second,
etc.); in Coral, such relations are mapped onto verbs:

(4) a. "a" & "telephone" & #1 .* #2

c. a token “a” is followed by a token “telephone”

Table 1 provides a list of AQL’s relation symbols and the verbs they map to in Coral.
Verbs can be used in active or in passive voice; all of the below Coral statements are
thus equivalent:

(5) c1. “a” precedes “telephone”

c2. “telephone” is preceded by “a”

c3. “telephone” follows “a”

c4. “a” is followed by “telephone”

As shown in the sample query in Fig. 1, definite noun phrases can be used as anaphoric
expressions to refer to objects that have been introduced earlier in the query. To fa-
cilitate anaphora resolution in complex queries, Coral additionally permits the use of
numbers as explicit identifiers:

4



CORAL AQL
[1] precedes [2] #1 .* #2
[1] directly precedes [2] #1 . #2
[1] is preceded by [2] #2 .* #1
[1] is directly preceded by [2] #2 . #1
[1] follows [2] #2 .* #1
[1] directly follows [2] #2 . #1
[1] is followed by [2] #1 .* #2
[1] is directly followed by [2] #1 . #2
[1] contains [2] #1 >* #2
[1] directly contains [2] #1 > #2
[1] is contained in [2] #2 >* #1
[1] is directly contained in [2] #2 > #1
[1] is identical to [2] #1 = #2
[1] includes [2] #1 i #2
[1] is included in [2] #2 i #1
[1] overlaps with [2] #1 o #2
[1] overlaps on the right with [2] #1 or #2
[1] overlaps on the left with [2] #1 ol #2
[1] is left-aligned with [2] #1 l #2
[1] is right-aligned with [2] #1 r #2
[1] shares a parent with [2] #1 $ #2
[1] shares an ancestor with [2] #1 $* #2

Table 1: Default relations of the Coral lexicon and their AQL equivalents.

(6) a. cat="S" & cat="S" & #1 >* #2 & pos="V" & #1 >* #3 &
#2 .* #3

c. a sentence (1) contains a sentence (2);
sentence (1) contains a verb;
sentence (2) precedes the verb

AQL’s unary operators are realised as prepositional phrases or as the direct object of
the verb have:

(7) a. cat="NP" & #1:length=6

c1. a noun phrase with length 6

c2. a noun phrase has length 6

Negation is only possible on the level of attribute-value pairs in AQL; in Coral, this
feature can be expressed by inserting not:

(8) a. pos="N" & lemma!="telephone" & #1 = #2

c. a noun with a lemma that does not have the value “telephone”

5



The value of an attribute can also be indicated as a regular expression; in Coral, regular
expressions are introduced by the verb match:

(9) a. pos="N" & lemma=/d[aeiou]g/ & #1 = #2

c. a noun has a lemma that matches “d[aeiou]g”

In AQL, edges can be assigned attribute-value pairs as labels. The example below
shows an edge labelled with the user-defined attribute func. In Coral, such edge la-
bels are expressed as prepositional phrases with the preposition as:

(10) a. cat="S" & pos="N" & #1 >[func="OA"] #2

c. a sentence contains a noun as an accusative object

A special key phrase makes it possible to indicate the distance between tokens:

(11) a. pos="N" & pos="Conj" & #2 .5,10 #1

c. a noun follows a conjunction at a distance of 5 to 10 tokens

Complex queries can be constructed by combining these elements:

(12) a. CAT="S" & POS=V & LEMMA=/.*ize/ & #2 = #3 & #1 >* #2 &
CAT="NP" & #1 >[func=OA] #4 & POS=N & LEMMA="telephone"
& #5 = #6 & #2 .5,10 #5 & #4 >* #5

c. a sentence contains a verb with a lemma that matches “.*ize” and contains
a noun phrase as an accusative object;
the noun phrase contains a noun with the lemma “telephone” that follows
the verb at a distance of 5 to 10 tokens;

AQL has some more features, which cannot all be discussed here. Coral covers all
but some of the most recently added features of AQL.

3.2 Predictive Editor
As mentioned at the beginning of this paper, we chose the predictive editor approach
to solve the problem that controlled English is easy to read but relatively hard to write.
We took the editor that is part of the ACE Editor3 and of AceWiki (Kuhn, 2009a). The
source code of these systems is open4, and the predictive editor module can be easily
reused and incorporated in other systems.

Figure 2 shows a screenshot of the predictive editor in Coral. Its interface is organ-
ised as follows. At the very top, it shows the (partial) query that the users have entered
so far. Underneath, it shows all ways in which the query can currently be continued. At
any given point in time, users can continue the composition of their query by choos-
ing from any of the displayed words or phrases. Of course, the availability of specific
words or phrases also depends on the grammar and lexicon that have been loaded (see
below).

3http://attempto.ifi.uzh.ch/aceeditor
4https://github.com/AceWiki/AceWiki

6



Figure 2: The predictive editor of the Coral system.

The availability of a predictive editor thus enables users to compose query state-
ments that comply with the restrictions of the controlled language without having to
memorise these restrictions beforehand. User experiments with the AceWiki system
showed that the predictive editor in question is easy to use, even without prior training
(Kuhn, 2009b).

3.3 Grammar and Lexicon
The grammar describing the controlled subset of English used in Coral is written in
the Codeco notation (Kuhn, 2010a). This notation is specifically designed for con-
trolled natural languages to be used in predictive editors. Coral’s grammar consists of
51 grammar rules.

The lexicon describes the dynamic part of the language: it can easily be modified
and customised for specific corpora and their tag sets. Table 2 shows some exemplary
lexicon entries of element, property and role descriptions. Elements describe tokens
and nodes, properties map to tag names, and roles are used for labelled edges. Since
AQL does not have predefined tag names or categories, the mapping from controlled
English to AQL depends on the actual tag set used by the respective corpus. For this
reason, the lexicon has to be tailored towards the corpus to be used. Alternatively, more
low-level expressions are possible in Coral, as shown above in example (2).

In contrast to tag names and categories, general relations like precedence and con-

7



TYPE CORAL AQL
element adjective phrase CAT="AP"
element noun phrase CAT="NP"
element adjective POS=/ADJ.*/
element proper noun POS="NE"
element normal noun POS="NN"
element noun POS=/N.*/
property category CAT
property part of speech POS
property lemma LEMMA
role the subject [func="SB"]
role a relative clause [func="RC"]

Table 2: Some exemplary lexicon entries of element, property and role descriptions.

tainment are predefined in AQL: these entries in Coral’s lexicon do therefore not need
to be adapted to the tag sets of specific corpora. However, it can still make sense to
give these relations different aliases in different application areas, to allow or disallow
certain synonyms, or to remove certain relations from the lexicon if they are not needed
in a particular scenario. Table 1 shows the default definitions of the relations.

4 Evaluation
To test whether the approach implemented in the Coral system constitutes an improve-
ment to existing query interfaces, we set up a user experiment. We chose ANNIS as the
system to compare Coral against. ANNIS provides a graphical query builder as well as
the possibility to directly write AQL code. Since both Coral and ANNIS rely on AQL,
a direct comparison is possible. We will first explain the design of the experiment and
then discuss the results we obtained.

4.1 User Experiment Design
The experiment focused on how easy it is to compose corpus queries in either system.
The experiment was thus performed on the query interfaces only, without a corpus ac-
tually being searched: the participants were told to compose queries, but it was not in
fact possible for them to see any results these queries might have returned. The reason
for this was to keep the design of the experiment simple, focusing on one key aspect
and allowing for strict and clear evaluation. It seems natural to expect that users nor-
mally use corpus query engines in an iterative, trial-and-error-based manner, while our
experiment only covers the first of such a sequence of queries. However, it is sensible
to assume, we think, that the first query plays a crucial role: it must have a fair quality
in order to keep the iterative process going into the right direction, and for very simple
queries users would probably get frustrated if they fail to get it right on the first try.

8



We have to leave these assumptions to future research and we concentrate here on the
quality of queries written without the feedback from previous query results.

We recruited twelve participants, all with a computational linguistics5 background
(students or researchers) and a reasonably good, non-native command of English but
without any special expertise in controlled natural languages. None of them had worked
with ANNIS or Coral before, but eight of them had worked with systems similar to
ANNIS, and three had worked with systems similar to Coral (according to the ques-
tionnaire they had to fill out after the experiment).

All participants were tested on both systems, Coral and ANNIS. In order to rule
out learning effects, half of them received Coral first, while the other half started with
ANNIS.

The task of the participants was to compose queries (using Coral or ANNIS) for
given statements in natural language. Since these statements were not to be biased
towards one of the systems, we took them from academic articles and user guides, pre-
serving exact wording and formatting. We selected eight statements that are reasonably
simple and use consistent vocabulary and divided them into three groups:

Group A:

1. Find all trees in which ‘is’ immediately precedes a determiner (Schulte im Walde
and Zinsmeister, 2006)

2. verb fight followed by the noun independence (Rychlý, 2008)

3. Find nouns that follow a verb which is a child of a verb phrase (Bird et al., 2005)

Group B:

4. verb fight followed by any preposition (Rychlý, 2008)

5. Find noun phrases that immediately follow a verb (Bird et al., 2005)

6. Find all verb phrases that are comprised of a verb, a noun phrase, and a preposi-
tional phrase (Bird et al., 2005)

Group C:

7. verb fight preceded by a noun (Rychlý, 2008)

8. locate all sentences with a preposition followed immediately by the word “the”
(MacWhinney, 2009)

The Coral lexicon entries required to express these statements are shown in Table 3.
Half of the participants had to express the statements of group A in Coral and those

of group B in ANNIS; the other half of the participants had to express the statements
of group A in ANNIS and those of group B in Coral. The statements of group C were
used as examples in the instructions.

The procedure of the experiment was as follows:
5We chose computational linguists as participants to give ANNIS a more realistic chance to outscore

CORAL. As computational linguists should be familiar with formal query languages, they can be expected
to produce sensible results on both systems after the short learning phases provided during the experiment.

9



TYPE CORAL AQL
element sentence CAT="S"
element noun phrase CAT="NP"
element verb phrase CAT="VP"
element prepositional phrase CAT="PP"
element determiner POS="DET"
element verb POS="V"
element noun POS="N"
element preposition POS="PREP"
property category CAT
property part of speech POS
property lemma LEMMA

Table 3: Element and property entries of the Coral lexicon used in the experiment.

1. The participants read an instruction sheet explaining the procedure of the exper-
iment.

2. The participants received an instruction sheet for the first system (either Coral
or ANNIS), which provided them with the knowledge needed to successfully
accomplish the subsequent tasks (showing only the elements and relations nec-
essary for the tasks). The instructions used statements 7 and 8 as examples and
showed how they could be expressed as queries in the respective system. Fig-
ure 3 illustrates the sample solutions that were provided for statement 8. The
participants were allowed to spend six minutes on this step.

3. The participants then received one of the statements of group A (or B respec-
tively) and had to compose a query for it on the given system. They were granted
two minutes to solve the task, and they were allowed to consult the instructions.
In the case of the ANNIS interface, the participants could either directly write the
query code or use the graphical editor, as they preferred. This step was then re-
peated for the other two statements of the same group. The participants received
the individual statements in different orders.

4. Steps 2 and 3 were repeated for the other system.

5. The participants filled out a questionnaire asking about their background, whether
they have worked with similar systems before, and how usable they found the two
systems.

We chose strict and tight time limits because the tasks were relatively simple, the par-
ticipants were skilled, and perfect scores for both systems would not have allowed us to
detect on which system the participants performed better. Participants were allowed to
finish before the time limit was reached; we recorded the amount of time they needed
for each task. Thus we were able to compare Coral and ANNIS not only with regard to
the number of tasks that were solved, but also with regard to the time that was needed
to complete these tasks.

10



Task: Create a query that expresses the situation of the following statement:

locate all sentences with a preposition followed immediately by the
word “the”

Sample Solutions:

Coral:

ANNIS (graphical):

ANNIS (AQL code): CAT="S" & POS="PREP" & "the" & #1 >* #2 & #2 . #3

Figure 3: An exemplary task that the participants of the experiment had to accomplish.

4.2 User Experiment Results
The most important result is the number of tasks the participants accomplished suc-
cessfully for each system. Figure 4 compares the percentages of successful tasks for
each system, and Table 4 shows the concrete scores of the individual participants. With
the Coral system, participants managed to solve almost twice as many tasks as with
ANNIS (23 vs. 12). On average, 64% of the tasks were completed successfully with
Coral but only 33% with ANNIS. In the case of ANNIS, six of the participants used the
code-based way to construct all three queries, another four only used the graphical edi-
tor, and the remaining two used the code-based way for the first task and switched then
to the graphical editor for the remaining two tasks. The percentage of correctly for-
malised queries was slightly higher with the code-based editor than with the graphical
one (35% vs. 31%).

The difference of the scores (i.e. the number of correctly formalised queries) be-
tween Coral and ANNIS is statistically significant, with a p-value of 0.039 when using a
Wilcoxon signed rank test (Wilcoxon, 1945). Since these scores are not single measure-
ments but consist of three individual measurements each (i.e. Boolean measurements
of whether the task was accomplished or not), we can apply more fine-grained tests on
the individual tasks: applying a simple logistic regression, with the system used as the
independent variable and the score (0 or 1) as the dependent one, shows a significant

11



64Coral

33totalANNIS
35code-based

31graphical

0 20 40 60 80 100
Percentage of correct queries

Figure 4: Average percentage of correct queries per participant and system. In the case
of ANNIS, the results are shown for each of the two possibilities to construct queries
(i.e. code-based vs. graphical).

PARTICIPANT CORAL ANNIS TOTAL

1 3 2 5
2 3 2 5
3 3 1 4
4 3 1 4
5 2 2 4
6 2 2 4
7 2 0 2
8 2 0 2
9 2 0 2

10 0 2 2
11 1 0 1
12 0 0 0

TOTAL 23 12 35
AVERAGE 1.92 1.00 1.46

Table 4: Scores of the individual participants, sorted by their total score.

effect in favor of Coral (with a p-value of 0.011); the correlation between used sys-
tem and resulting score measured as a Pearson correlation shows a significant effect of
medium strengh in favor of Coral (with a coefficient of 0.31 and a p-value of 0.0090).

Next, we can have a look at the time aspect. Figure 5 shows the total amount of time
the participants spent on average on the three tasks of each system. With Coral, users
required a bit more than four minutes (86 seconds per task), whereas more than five
minutes were needed in the case of ANNIS (108 seconds per task). Only one participant
was faster with ANNIS, while all others were faster with Coral. The difference is highly
significant, with a p-value of 0.0044 when using a Wilcoxon signed rank test. The above
results include the time values for all tasks regardless of whether the participant was
successful or not. Restricting the attention to the successful tasks shows an even bigger
difference: 70 seconds per successful task for Coral versus 102 seconds for ANNIS.
The participants clearly required less time to accomplish the tasks with Coral than they

12



257Coral

324ANNIS

0 60 120 180 240 300 360
Time in seconds spent on the three tasks

Figure 5: Average total amount of time the participants spent on accomplishing the
three tasks.

2.33Coral

1.42ANNIS

0 1 2 3
Subjective usability

Figure 6: Degree of usability as perceived by the participants (0 means “very hard to
use”; 3 means “very easy to use”).

needed with ANNIS.
As a further dimension, we can look at the subjective usability, i.e. at how usable

the participants found the two systems. The questionnaire contained a question “How
easy or hard to use did you find system X?” for each of the systems. They could choose
between “very hard to use” (value 0), “hard to use” (1), “easy to use” (2), and “very
easy to use” (3). Figure 6 shows the results. Coral got an average value of 2.33, i.e.
between “easy to use” and “very easy to use”. ANNIS, in contrast, was in the lower
half between “hard to use” and “easy to use” with an average value of only 1.42. This
difference is significant too, with a p-value of 0.027. Thus, the participants perceived
Coral as being easier to use than ANNIS.

Finally, we can have a closer look at the tasks that the participants were not suc-
cessful in. We were able to identify seven patterns of mistakes: (1) some solutions
covered only part of what was described in the task; (2) others contained the correct
entities (categories, relations, etc.) but connected them in an incorrect way; (3) some
used incorrect relations (e.g. precedence instead of containment); (4) some used incor-
rect categories or parts of speech; (5) some contained mistyped tokens; (6) some were
empty; and finally (7) some solutions contained syntax errors (this last case was only
possible when ANNIS was used in its code-based mode). Furthermore, a number of in-
correct solutions could not be classified according to this scheme or contained multiple
mistakes. The distribution of these error types is visualized in Figure 7.

The most apparent difference between Coral and ANNIS in terms of error types is
the fact that errors due to incorrectly connected entities are frequent with ANNIS (about
11% of all tasks), while they did not occur in Coral. All participants that made this type
of error chose to use the code-based way to construct the query. The graphical editor of
ANNIS did not show this kind of problem. The following example should clarify why

13



0 3 6 9 12 15 18 21 24 27 30 33 36
Number of tasks

c correct
m missing information
n incorrectly connected entities
r incorrect relations
p incorrect categories / parts of speech
t mistyped tokens
e empty answers
s syntax errors
o multiple mistakes / others

Coral c m r p e o

ANNIS c m n r p t e s o

c m n r p t s o code-based
c m r p t e o graphical

Figure 7: Number and types of errors for all of the 36 tasks that were performed on each
system. For ANNIS: errors that were made with each of the two possible interfaces, i.e.
the code-based and the graphical one.

this type of error is so frequent with the code-based ANNIS interface. One participant’s
solution to task 5 (i.e. “Find noun phrases that immediately follow a verb”) consisted
of the following AQL query:

CAT="NP" & POS="V" & #1 . #2

This solution is almost correct, but it should be “#2 . #1” instead of “#1 . #2” to
correctly reflect the task description. Arguably, the direction of a relation is clearer
with Coral’s controlled English (“precedes” or “is preceded by”?) than with AQL (“#1
. #2” or “#2 . #1”?).

Another type of problem that only occurred with the code-based interface of AN-
NIS were syntax errors, which could be identified as the sole cause of an incorrect
solution in two cases. The fact that mistyped tokens and multiple mistakes were more
frequent with ANNIS than with Coral could be an indication that some users were
overwhelmed by ANNIS and did not manage to understand the interface in the short
time provided.

In summary, our results show that in the given scenario (computational linguists
as users, little training, and relatively high time pressure) Coral is easier to use than
ANNIS. We expect that linguists without a computer science background would exhibit
an even stronger preference of Coral.

14



5 Related Work
A number of approaches have been presented in the past that are related to our ap-
proach.

Controlled English has been proposed for queries to the structure of software code
(Würsch et al., 2010) and as a query language for ontologies (Kaufmann and Bernstein,
2007). This has been implemented in systems like GINO (Bernstein and Kaufmann,
2006) and PANTO (Wang et al., 2007). Other approaches use controlled English as
a general knowledge representation language for the Semantic Web (Schwitter and
Tilbrook, 2004; Kaljurand, 2007; Schwitter et al., 2008). In the area of corpus queries,
however, to the best of our knowledge no research on controlled language queries has
been conducted so far.

In terms of evaluation, there are some experiments that test the understandability
of controlled languages (Kuhn, 2010b; Hart et al., 2008; Hallett et al., 2007; Chervak
et al., 1996). They come to the conclusion that statements in controlled English are
easier to understand than other formal languages. However, this does not imply that
such statements are also easier to write (given an appropriate editor), which is what we
showed with our experiment.

Funk et al. (2007) compared the usability of an ontology editor based on controlled
English and a classical ontology editor (their study is about writing declarative state-
ments, not queries). They found a significant preference for the first system but, in
contrast to what we did, they only measured the subjective usability, i.e. the partici-
pants were asked how usable they found the respective system. The subjective feeling
of the participants, however, does not necessarily coincide with the actual, objective
usability of the tool (they might have made mistakes without having noticed it, they
might have over- or underestimated certain aspects, etc.).

6 Conclusions
Linguistically annotated text corpora will be the more useful, the more effectively re-
searches can query them. At present, linguists interested in regularities that require
complex queries are forced to learn sophisticated formal languages or complicated
graphical notations if they want to access these corpora. We believe that corpus-based
linguistic research would greatly profit from the availability of query methods that
would combine the expressivity and power of formal query languages with greater in-
tuitiveness and ease of use.

In this paper, we have shown that controlled natural language may prove to be a
useful tool to achieve this goal. We have introduced Coral, a system in which users
can express queries in a controlled subset of natural English and which then automati-
cally translates these queries into the formal query language AQL. The evaluation we
conducted showed that even relatively skilled users find it easier to compose corpus
queries with Coral’s predictive editor than to express them in a formal query language
they were not deeply familiar with, at least on the first encounter with the system. The
effects of iterative interaction with the system and of longer periods of usage experience
and training remain open to be studied for the future.

15



Acknowledgments
We would like to thank Amir Zeldes and Florian Zipser for their help on ANNIS and
AQL. We also want to thank Alexandra Bünzli, Norbert E. Fuchs, Michael Hess and
Gerold Schneider for their input and feedback. Finally, we thank all participants of the
experiment for their time and effort.

References
Adriaens, G. and D. Schreors: 1992, ‘From COGRAM to ALCOGRAM: Toward a

Controlled English Grammar Checker’, in Proceedings of the 14th Conference on
Computational Linguistics, Vol. 2, pp. 595–601. Association for Computational Lin-
guistics.

Bernstein, A. and E. Kaufmann: 2006, ‘GINO — A Guided Input Natural Language
Ontology Editor’, in The Semantic Web — ISWC 2006, Proceedings of the 5th Inter-
national Semantic Web Conference (Lecture Notes in Computer Science 4273), pp.
144–157. Springer.

Bird, S., Y. Chen, S. B. Davidson, H. Lee, and Y. Zheng: 2005, ‘Extending XPath to
support linguistic queries’, in Proceedings of the Workshop on Programming Lan-
guage Technologies for XML 2005 (PLAN-X 2005), pp. 35–46.

Brill, E.: 1993, A Corpus-Based Approach to Language Learning, PhD dissertation,
Department of Computer and Information Science, University of Pennsylvania,
Philadelpha, PA, USA.

Chervak, S., C. G. Drury, and J. P. Ouellette: 1996, ‘Field Evaluation of Simplified
English for Aircraft Workcards’, in Proceedings of the 10th FAA/AAM Meeting on
Human Factors in Aviation Maintenance and Inspection.

Chiarcos, C., S. Dipper, M. Götze, J. Ritz, and M. Stede: 2008, ‘A Flexible Framework
for Integrating Annotations from Different Tools and Tagsets’, in Proceeding of the
Conference on Global Interoperability for Language Resources. Hongkong, China.

Christ, O.: 1994, ‘A modular and flexible architecture for an integrated corpus query
system’, in Proceedings of COMPLEX’94, 3rd Conference on Computational Lexi-
cography and Text Research, pp. 23–32.

Clark, P., P. Harrison, T. Jenkins, J. Thompson, and R. H. Wojcik: 2005, ‘Acquiring and
Using World Knowledge Using a Restricted Subset of English’, in Proceedings of the
Eighteenth International Florida Artificial Intelligence Research Society Conference
(FLAIRS 2005), pp. 506–511. AAAI Press.

Fuchs, N. E., K. Kaljurand, and T. Kuhn: 2008, ‘Attempto Controlled English for
Knowledge Representation’, in Reasoning Web — 4th International Summer School
2008, pp. 104–124. Springer.

16



Funk, A., V. Tablan, K. Bontcheva, H. Cunningham, B. Davis, and S. Handschuh: 2007,
‘CLOnE: Controlled Language for Ontology Editing’, in Proceedings of the 6th In-
ternational Semantic Web Conference and the 2nd Asian Semantic Web Conference
(ISWC 2007 + ASWC 2007) (Lecture Notes in Computer Science 4825), pp. 142–
155. Springer.

Hallett, C., D. Scott, and R. Power: 2007, ‘Composing Questions through Conceptual
Authoring’, Computational Linguistics 33(1), 105–133.

Hart, G., M. Johnson, and C. Dolbear: 2008, ‘Rabbit: Developing a Controlled Natural
Language for Authoring Ontologies’, in Proceedings of the 5th European Semantic
Web Conference (ESWC 2008) (Lecture Notes in Computer Science 5021), pp. 348–
360. Springer.

Kaljurand, K.: 2007, Attempto Controlled English as a Semantic Web Language, PhD
dissertation, Faculty of Mathematics and Computer Science, University of Tartu,
Estonia.

Kaufmann, E. and A. Bernstein: 2007, ‘How Useful are Natural Language Interfaces
to the Semantic Web for Casual End-users?’, in Proceedings of the 6th International
Semantic Web Conference and the 2nd Asian Semantic Web Conference (ISWC 2007
+ ASWC 2007) (Lecture Notes in Computer Science 4825), pp. 281–294. Springer.

König, E., W. Lezius, and H. Voormann: 2003, ‘TIGERSearch 2.1 — User’s Manual’.
University of Stuttgart.

Kuhn, T.: 2009a, ‘AceWiki: A Natural and Expressive Semantic Wiki’, in Proceedings
of the Fifth International Workshop on Semantic Web User Interaction (SWUI 2008)
— Exploring HCI Challenges (CEUR Workshop Proceedings 543). CEUR-WS.

Kuhn, T.: 2009b, ‘How Controlled English can Improve Semantic Wikis’, in Proceed-
ings of the Forth Semantic Wiki Workshop (SemWiki 2009) (CEUR Workshop Pro-
ceedings 464). CEUR-WS.

Kuhn, T.: 2010a, ‘Codeco: A Grammar Notation for Controlled Natural Language in
Predictive Editors’, in Pre-Proceedings of the Second Workshop on Controlled Nat-
ural Languages (CNL 2010) (CEUR Workshop Proceedings 622). CEUR-WS.

Kuhn, T.: 2010b, ‘An Evaluation Framework for Controlled Natural Languages’, in
Proceedings of the Workshop on Controlled Natural Language (CNL 2009) (Lecture
Notes in Computer Science 5972), pp. 1–20. Springer.

MacWhinney, B.: 2009, ‘The CHILDES Project, Tools for Analyzing Talk, Part 2: The
CLAN Programs’. Carnegie Mellon University, electronic edition.

Pool, J.: 2006, ‘Can Controlled Languages Scale to the Web?’, in Proceedings of the
5th International Workshop on Controlled Language Applications (CLAW 2006).

Power, R., R. Stevens, D. Scott, and A. Rector: 2009, ‘Editing OWL through Generated
CNL’, in Pre-Proceedings of the Workshop on Controlled Natural Language (CNL
2009) (CEUR Workshop Proceedings 448). CEUR-WS.

17



Rychlý, P.: 2008, ‘Building and Exploring (Web) Corpora’. www.fi.muni.cz/˜pary/
emasters08-1.pdf.

Schwitter, R., K. Kaljurand, A. Cregan, C. Dolbear, and G. Hart: 2008, ‘A Compar-
ison of three Controlled Natural Languages for OWL 1.1’, in Proceedings of the
Fourth OWLED Workshop on OWL: Experiences and Directions (CEUR Workshop
Proceedings 496). CEUR-WS.

Schwitter, R., A. Ljungberg, and D. Hood: 2003, ‘ECOLE — A Look-ahead Editor
for a Controlled Language’, in Controlled Translation — Proceedings of the Joint
Conference combining the 8th International Workshop of the European Association
for Machine Translation and the 4th Controlled Language Application Workshop
(EAMT-CLAW03), pp. 141–150. Dublin City University, Ireland.

Schwitter, R. and M. Tilbrook: 2004, ‘Controlled Natural Language meets the Seman-
tic Web’, in Proceedings of the Australasian Language Technology Workshop 2004
(ALTA Electronic Proceedings 2), pp. 55–62. Australasian Language Technology
Association.

Schwitter, R. and M. Tilbrook: 2006, ‘Let’s Talk in Description Logic via Controlled
Natural Language’, in Proceedings of the Third International Workshop on Logic
and Engineering of Natural Language Semantics (LENLS2006), pp. 193–207.

Tennant, H. R., K. M. Ross, R. M. Saenz, C. W. Thompson, and J. R. Miller: 1983,
‘Menu-based Natural Language Understanding’, in Proceedings of the 21st annual
meeting on Association for Computational Linguistics, pp. 151–158. Association for
Computational Linguistics.

Schulte im Walde, S. and H. Zinsmeister: 2006, ‘Exercise: Searching Treebanks
TIGERSearch and Tregex’. http://www.coli.uni-saarland.de/˜schulte/
Teaching/ESSLLI-06/Exercises/syntax-ex.pdf.

Wang, C., M. Xiong, Q. Zhou, and Y. Yu: 2007, ‘PANTO: A Portable Natural Lan-
guage Interface to Ontologies’, in The Semantic Web: Research and Applications —
Proceedings of the 4th European Semantic Web Conference (ESWC 2007) (Lecture
Notes in Computer Science 4519), pp. 473–487. Springer.

Wilcoxon, F.: 1945, ‘Individual Comparisons by Ranking Methods’, Biometrics Bul-
letin 1(6), 80–83.

Würsch, M., G. Ghezzi, G. Reif, and H. C. Gall: 2010, ‘Supporting developers with
natural language queries’, in ICSE ’10: Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering, pp. 165–174. ACM, New York, NY,
USA.

Wyner, A., K. Angelov, G. Barzdins, D. Damljanovic, B. Davis, N. Fuchs, S. Hoefler,
K. Jones, K. Kaljurand, T. Kuhn, M. Luts, J. Pool, M. Rosner, R. Schwitter, and J.
Sowa: 2010, ‘On Controlled Natural Languages: Properties and Prospects’, in Pro-
ceedings of the Workshop on Controlled Natural Language (CNL 2009) (Lecture
Notes in Computer Science 5972), pp. 281–289. Springer.

18



Zeldes, A., J. Ritz, A. Ldeling, and C. Chiarcos: 2009, ‘ANNIS: A Search Tool for
Multi-Layer Annotated Corpora’, in Proceedings of Corpus Linguistics 2009.

19


